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1. Introduction

The N = 4 supersymmetric Yang-Mills theory (SYM) attracts much attention these days

providing the playground to test nonperturbative features of quantum field theory. This

is related to the property of conformal invariance of SUSY theories which is unique for

four dimensional quantum field theories [1]. N = 4 SYM was the first example of this sort

stimulating further progress [1]. Another remarkable feature of the N = 4 SYM theory is

that via the AdS/CFT correspondence [2] it is related to a supergravity theory and one

can get deeper understanding of duality between these two theories. Combined information

may lead to new insight in gauge theories beyond the usual PT.

Note that the above mentioned AdS/CFT correspondence requires from the field theory

to be conformally invariant and not necessarily obtaining the full N = 4 supersymmetry.

From this point of view it would be interesting to consider the other conformally invariant

theories and to find the corresponding supergravity backgrounds. Of special interest is

a marginally deformed N = 4 theory analyzed in [3] for which the supergravity dual

description has been found in [4]. This the so-called β deformation of the original N = 4

SYM theory has been studied in the context of AdS/CFT correspondence in [5 – 7] and [8].

The authors of [9, 10] studied the N = 4 SYM theory with the aim to get the conditions

for its finiteness and conformal invariance. They performed a thorough analysis of the UV

divergences in the framework of dimensional regularization (reduction) and found out that

one can reach the desired goal if the deformation parameter β is real. They also claim that

the requirements of finiteness and conformal invariance are not simultaneously satisfied

and if one requires only conformal invariance to be valid then the complex values of β are

also allowed [10]. This problem has been also considered in [11] where it was shown that

conformal invariance understood as vanishing of the beta function holds in all orders of

PT for any complex value of the deformation parameter provided one properly adjusts the

couplings.
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The aim of this paper is to show that the above mentioned mismatch between con-

formal invariance and finiteness is a result of mistreatment of dimensional regularization

(reduction). If applied properly, one can reach both conformal invariance and finiteness

simultaneously, thus allowing for the complex β deformations. Moreover, one can construct

the whole family of conformally invariant and finite N = 1 SYM theories, however, their

dual description is not known so far.

2. The general formalism

The problem of finiteness in SYM theories has been studied long time ago [12] and the

formalism has been developed [13] that allows one to treat the theory within the dimensional

regularization (reduction). For completeness we briefly summarize it below.

Let us consider an N = 1 SYM theory formulated in terms of N = 1 superfields

with an arbitrary cubic superpotential containing some set of Yukawa couplings {y}. We

assume that a theory is gauge invariant and for simplicity consider the background gauge.

Then from the non-renormalization theorems [14] one gets that in the chiral sector only

the propagators are divergent and have to be renormalized while the vertices are finite. As

for the gauge sector, in background gauge the renormalization of the vertex coincides with

that of the gauge propagator, so one can also consider the gauge propagator only [15].

At the one loop order to get the gauge propagator finite one has to make the proper

choice of the matter superfields. The following requirement is to be satisfied [16]:

∑

R

T (R) = 3C2(G), (2.1)

where T (R) is the Dynkin index of a given representation R and C2(G) is the quadratic

Casimir operator of the group.

Provided the requirement (2.1) is satisfied the only divergence one should take care of

is the one of the chiral field propagator. This is a consequence of the following theorem [17]:

Theorem: If N = 1 supersymmetric gauge theory is finite in L loops, the gauge

propagator is finite L + 1 loops.

The same statement follows also from the explicit expression for the gauge beta func-

tion written in terms of the anomalous dimensions of the chiral fields in some particular

scheme [18]

βg = g2

∑
T (R) − 3C(G) −

∑
T (R)γ(R)

1 − 2gC(G)
, g ≡ g2/16π2. (2.2)

Thus, if the anomalous dimensions of the chiral fields vanish, so does the gauge and

Yukawa beta functions and the theory is conformally invariant. In some other gauges (for

instance in components) one can have non-vanishing anomalous dimensions of some fields

or vertices, but the beta functions still vanish. This situation is also attributed to conformal

invariance since only the gauge invariant quantities make sense. In what follows we will

assume the simplest possibility when all anomalous dimensions vanish and will call this

situation conformal invariance.

– 2 –



J
H
E
P
0
8
(
2
0
0
7
)
0
7
1

Now the question is: how to reach this goal, i.e. how to get conformal invariance? And

the related one: is the theory finite (that is all divergences cancel) in this case? We show

below how it may be done in the framework of dimensional regularization (reduction) and

give a positive answer to the second question. First, we analyse both problems (conformal

invariance and finiteness) separately and then show that this is the same.

To study conformal invariance or vanishing of the anomalous dimensions one has first

to apply some regularization and some renormalization scheme. In general the anomalous

dimensions are scheme dependent but if they vanish, they vanish in any scheme. We adopt

dimensional regularization or more precisely dimensional reduction [19] since dimensional

regularization does not support supersymmetry. We ignore the problem of inconsistency of

dimensional reduction in higher orders [20] assuming that it is adjusted by finite corrections.

We adopt also the MS renormalization scheme. Then the chiral field renormalization

constant has the form

Z−1
2i = 1 +

∞∑

n=1

C
(i)
n ({y}, g)

εn
, C(i)

n ({y}, g) =
∞∑

k=n

Ci
kn({y}, g), (2.3)

where the coefficient functions Ci
kn({y}, g) are the homogeneous polynomials in yi and g of

the order of k.1 The anomalous dimensions γi depend on renormalized couplings {y} and

g and are given by the single pole terms

γi({y}, g) =
∑

k

kCi
k1({y}, g). (2.4)

In the lowest orders one has

γi({y}, g) = Bi
1jyj + Bi

10g +
∑

j,k

Bi
2jkyjyk +

∑

j

Bi
2jyjg + Bi

20g
2 + · · · ., (2.5)

where Bi
j... are some numbers.

The vanishing of anomalous dimensions can be achieved by choosing the Yukawa cou-

plings in the form of perturbation series over g [12]

yi = α
(0)
0i g + α

(0)
1i g2 + α

(0)
2i g3 + · · · , (2.6)

where the coefficients α
(0)
ni are calculated order by order in PT solving the system of linear

algebraic equations. To guarantee the existence of solution the one-loop matrix Bi
1j has

to be non-degenerate. This has to be explicitly checked in one loop. Then the procedure

works in all orders.

This is not enough, however, to cancel all the pole terms in Z factors (2.3). At the

same time finiteness of Z would mean the finiteness of a theory. Indeed, to cancel the

pole terms one has to write down eq. (2.6) for ε 6= 0 which means that one has a double

1
Hereafter for the shorthand notation we use g = g2/16π2, yi = y2

i /16π2
.
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series [13]

yi = g
(
α

(0)
0i + α

(1)
0i ε + α

(2)
0i ε2 + · · · + α

(n−2)
0i εn−2 + α

(n−1)
0i εn−1 + α

(n)
0i εn + · · ·

)

+g2
(
α

(0)
1i + α

(1)
1i ε + α

(2)
1i ε2 + · · · + α

(n−2)
1i εn−2 + α

(n−1)
1i εn−1 + · · ·

)

+g3
(
α

(0)
2i + α

(1)
2i ε + α

(2)
2i ε2 + · · · + α

(n−2)
2i εn−2 + · · ·

)

+ · · · · · · · · · · · · · · ·

+gn−1
(
α

(0)
n−2i + α

(1)
n−2iε + · · ·

)
+ gn

(
α

(0)
n−1i + · · ·

)
. (2.7)

In a given order of PT equal n one needs all terms of the double expansion with a total

power of g ·ε equal n. The existing freedom of choice of the coefficients α
(m)
ki is enough to get

simultaneously the vanishing of the anomalous dimensions (read conformal invariance) and

the pole terms in Z factors (read finiteness). The coefficients from α
(0)
ni to α

(n)
0i calculated

in n-th order of PT are related. One can not put either of them to zero in an arbitrary way.

Notice, however, that if the renormalization constants Zi are finite, there is no need

to any renormalization at all. One can proceed with the unrenormalized expressions. To

show this we again consider the chiral propagators. Consider the bare chiral propagator

prior to any renormalization given by perturbative expansion (D-algebra had already been

performed)

DiB({yB}, gB , p2, ε) = 1 +

∞∑

n=1

1

(p2)nε

(
di

n(yB , gB)

εn
+

di
n−1(yB, gB)

εn−1
+ · · · (2.8)

+
di
1(yB , gB)

ε
+ di

0(yB , gB) + · · ·

)
.

The finiteness now means that all di
n(yB, gB), n > 0 vanish. It is possible to achieve

this goal without any preliminary renormalization in terms of the bare couplings. The

bare couplings, contrary to the renormalized ones, do not depend on the renormalization

scheme but on regularization. In case of a finite theory they are finite and related to the

renormalized ones by finite renormalization which is scheme dependent.

The coefficient functions di
n(yB, gB) are also the homogeneous polynomials over yB and

gB and to achieve the vanishing of them one can choose the bare Yukawa couplings in the

form of one fold ε expansion with positive powers of ε [13]

yiB = gB(α
(0)
0i + α

(1)
0i ε + α

(2)
0i ε2 + · · ·). (2.9)

The coefficients α
(n)
0i like α

(0)
ni above are calculated order by order of PT again solving the

system of linear algebraic equations. In one loop this system of equations coincides with

the one for determining the coefficients α
(0)
ni with modified r.h.s. and is solvable if the one

loop matrix Bi
1j is not-degenerate. This requirement again guarantees the solution in all

orders. Notice that the vanishing of the simple pole automatically leads to the vanishing

of the higher order poles. This is the consequence of local renormalizability of quantum

field theory.
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One can see that the problem of finiteness is easier to address in terms of the bare

quantities. Eq. (2.9) contrary to (2.7) is linear with respect to gB and is easier to implement.

But both the ways lead to the same statement: if the theory is finite it is conformally

invariant and vice versa.

3. Example

To demonstrate how the above mentioned statements are explicitly realized in the frame-

work of dimensional regularization (reduction) we consider a toy example which imitates

the situation in beta deformed N = 4 SYM theory.

Let us assume that we have a supersymmetric gauge theory with only one Yukawa cou-

pling y corresponding to a triple interaction. Consider the propagator of a chiral superfield

calculated up to three loops (D algebra had already been performed)

DB(p2, gB , hB) = 1 +

(
d11

ε
+ d10 + d1−1ε

)
1

(p2)ε
+

(
d22

ε2
+

d21

ε
+ d20

)
1

(p2)2ε

+

(
d33

ε3
+

d32

ε2
+

d31

ε

)
1

(p2)3ε
+ · · · , (3.1)

where the coefficient functions dij = dij(gB , yB) depend on the bare couplings and are the

homogeneous polynomials of the order i.

The renormalization constant which makes the propagator finite in the MS scheme is

Z−1
2 = 1 +

c11

ε
+

(
c22

ε2
+

c21

ε

)
+

(
c33

ε3
+

c32

ε2
+

c31

ε

)
+ · · · , (3.2)

where the coefficients cij = cij(g, y) depend on the renormalized couplings and are also

the homogeneous polynomials of the order i. This expression allows one to define the

anomalous dimension γ

γ(g, y) = c11 + 2c21 + 3c31 + · · · (3.3)

and the Yukawa beta function

βy(g, y) = 3yγ(g, y). (3.4)

The bare coupling yB and the renormalized one are related by

yB = yZ−3
2 , (3.5)

where Z−1
2 is given by (3.2). Similarly for the gauge coupling one has

gB = gZg, (3.6)

where we define

Zg = 1 +
a11

ε
+

(
a22

ε2
+

a21

ε

)
+ · · · , (3.7)

and the gauge beta function is

βg(g, y) = a11 + 2a21 + · · · (3.8)
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For our purposes we will need it up to two loops.

Not all of these coefficients are independent. By pole equations [21] the coefficients of

the higher order poles in Z factors can be expressed in terms of the single pole ones as

a22 =
1

2

[
a11a11 + a11g

da11

dg
+ 3c11y

da11

dy

]
, (3.9)

c22 =
1

2

[
c11c11 + a11g

dc11

dg
+ 3c11y

dc11

dy

]
,

c33 =
1

3

[
c11c22 + a11g

dc22

dg
+ 3c11y

dc22

dy

]
,

c32 =
1

3

[
c11c21 + 2c21c11 + a11g

dc21

dg
+ 2a21g

dc11

dg
+ 3c11y

dc21

dy
+ 6c21y

dc11

dy

]
.

Moreover, from the requirement that

Z−1
2 DB(p2, gB , yB) = finite when ε → 0, (3.10)

where for gB and yB one has to substitute expansions (3.5), (3.6), one finds the relations

between the coefficients dij and cij . They are

d11 = −c11, (3.11)

d22 = c22,

d21 = −c21 − c11d10 − a11g
dd10

dg
− 3c11y

dd10

dy
,

d33 = −c33,

d32 = −c32 − c11d21 − d11c21 − d10c22 − a11g
dd21

dg
− 3c11y

dd21

dy
− c11a11g

dd10

dg
,

−6c11c11y
dd10

dy
− a22g

dd10

dg
− 3c22y

dd10

dy
− a21g

dd11

dg
− 3c21y

dd11

dy
,

d31 = −c31 − c11d20 − d10c21 − d1−1c22 − a11g
dd20

dg
− 3c11y

dd20

dy
− c11a11g

dd1−1

dg
,

−6c11c11y
dd1−1

dy
− a21g

dd10

dg
− 3c21y

dd10

dy
− a22g

dd1−1

dg
− 3c22y

dd1−1

dy
,

Having all these expressions one can demonstrate how the cancellation of divergences

and nullification of the beta function work. To imitate the situation in beta deformed N = 4

SYM theory we take the following expressions for the independent coefficient functions dij

and aij

d11 = d1(g − y), (3.12)

d10 = d0(g + y),

d1−1 = d−1(g + y),

d21 = d2(g
2 + gy + y2),

d20 = d−2(g
2 + gy + y2),

d31 = d3g
3 for y = g,

a11 = 0,

a21 = a2g(g − y).

– 6 –
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The explicit form of d10, d1−1, d21 and d20 is not essential. What is important they do not

vanish at y = g. For d31 we only need its value at y = g. Eq. (3.12) means that for the

chiral propagator the UV divergence disappears for y = g in the one loop order, but it

does not disappear in two and three loops (in the real beta deformed N = 4 SYM theory

in the planar limit it disappears in 1, 2 and 3 loops [11] but does not disappear in 4 and 5

loops [9])). At the same time the gauge beta function identically vanishes in one loop and

vanishes in two loops for y = g (in the real beta deformed N = 4 SYM theory it vanishes

up to 4 loops for y = g).

Given eq. (3.12) one can find the remained coefficient functions. They are

a22 = 0, (3.13)

c11 = d1(y − g),

c21 = −d2(g
2 + gy + y2) − d0d1(y + g)(y − g) − 3d0d1y(y − g),

c22 = d22 =
1

2
d2
1(y − g)(4y − g),

c31 = −d3g
3 + 15d0d2g

3 for y = g,

c32 = −2d2d1y(y2 + yg + g2) − d2d1(y − g)(3y2 + 2yg + g2) + 2/3a2d1g
2(y − g)

−d2
1d0(y − g)(20y2 − 4yg − g2),

d32 = −d2d1y(g2 + gy + y2) − d2d1(y − g)(5y2 + 3gy + g2) + 1/3a2d1g
2(y − g)

−d2
1d0(y − g)(10y2 − 2gy − 1/2g2),

c33 = −d33 =
1

6
d3
1(y − g)(28y2 − 20yg + g2).

Now one can calculate the anomalous dimension γ according to eq. (3.3)

γ = d1(y − g)− 2d2(g
2 + yg + y2)− 2d0d1(y − g)(4y + g)− 3d3g

3 + 45d0d2g
3 + · · · (3.14)

Vanishing of γ can be achieved if one chooses the renormalized Yukawa coupling y in the

form of perturbative expansion over g (see eq. 2.6))

y|ε=0 = g + α
(0)
1 g2 + α

(0)
2 g3 + · · · (3.15)

The requirement of vanishing of γ gives

α
(0)
1 = 6d2/d1, α

(0)
2 = 3(d3/d1 + 12d2

2/d
2
1 + 5d0d2/d1).

So, one has

y|ε=0 = g + 6
d2

d1
g2 + 3

(
d3

d1
+ 12

d2
2

d2
1

+ 5
d0d2

d1

)
g3 + · · · (3.16)

If eq. (3.16) is fulfilled then the anomalous dimension (and the beta function) van-

ishes up to three loops and one has conformal invariance. Since we claim that conformal

invariance in this context is synonym to finiteness, let us check the cancellation of UV

divergences. As was explained above we will need eq. (3.15) for ε 6= 0

y = g(1 + α
(1)
0 ε + α

(2)
0 ε2 + · · ·) + g2(α

(0)
1 + α

(1)
1 ε + · · ·) + g3(α

(0)
2 + · · ·). (3.17)
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Notice that in the third order of PT the one should take into account all terms of the

double expansion with the total power of g · ε equal 3.

Substituting eq. (3.17) into (3.2) one gets the remained coefficients

α
(1)
0 = −2d2/d

2
1, α

(2)
0 =

2

3d2
1

(
d3

d1
+ 6

d2
2

d2
1

−
2a2d2

3d2
1

+ 15
d0d2

d1

)
,

α
(1)
1 = −

2

d1

(
d3

d1
+ 12

d2
2

d2
1

−
2a2d2

3d2
1

+ 15
d0d2

d1

)
. (3.18)

With this choice of coefficients all the pole terms in Z−1
2 cancel. Notice that if α

(0)
1 is

responsible for the cancellation of the two-loop anomalous dimension, both α
(0)
1 and α

(1)
0

are needed to cancel the 1/ε term in two loops. They also cancel the 1/ε2 term in three

loops. Indeed, taking into account (3.17) it takes the form

1

ε2
: c32|y=g + y

dc33

dy
|y=gα

(1)
0 + y

dc22

dy
|y=gα

(0)
1 =

[
− 6d2d1 +

3

2
d3
1(−2)

d2

d2
1

+
3

2
d2
16

d2

d1

]
g3 = 0.

Similarly, α
(0)
2 is needed to cancel the three loop anomalous dimension and all three

α
(0)
2 , α

(1)
1 and α

(2)
0 terms are used to cancel the 1/ε term in three loops.

Consider now the chiral propagator (3.1) and substitute our values of the coefficients

dij . One has for the singular part

DB(p2, gB , hB) = 1 +
d1(gB − yB)

ε

1

(p2)ε
(3.19)

+

(
d2
1(yB − gB)(4yB − gB)

2ε2
+

d2(g
2
B + gByB + y2

B)

ε

)
1

(p2)2ε

+

(
−d3

1(yB − gB)(28y2
B − 20yBgB + g2

B)

6ε3
+

−d2d1yB(y2
B + yBgB + g2

B)

ε2

−d2d1(yB − gB)(5y2
B + 3yBgB + g2

B) + 1/3a2d1g
2
B(yB − gB)

ε2

−d2
1d0(yB − gB)(10y2

B − 2yBgB − 1/2g2
B)

ε2
+

d3g
3
B

ε

)
1

(p2)3ε
.

To get the cancellation of divergences in each order of perturbation theory one again has

to choose the Yukawa coupling in a proper way in the form of ε expansion

yB = gB

(
1 + α

(1)
0 ε + α

(2)
0 ε2 + · · ·

)
. (3.20)

Substituting this expansion into (3.19) and requiring the cancellation of divergencies one

gets for α
(1)
0 and α

(2)
0 the same values as above (3.18). Contrary to the nullification of

the anomalous dimension where the cancellation takes place between the lower and higher

orders of PT, here the cancellation takes place within the same order between the higher

and lower order pole terms. However, these two procedures are related since the higher

order poles are given via RG pole equations by the lowest order expressions (see eq. (3.9)).

Notice that the condition yB = gB cancels the leading poles in all orders, the condition

yB = gB(1 + α
(1)
0 ε) cancels subleading poles in all orders, and the condition yB = gB(1 +

– 8 –
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α
(1)
0 ε + α

(2)
0 ε2) cancels the subsubleading poles. In our case by the choice of α

(1)
0 we cancel

1/ε term in two loops and simultaneously 1/ε2 term in three loops. The α
(2)
0 term cancels

the 1/ε term in three loops. So, one has

yB = gB

(
1 − 2

d2

d2
1

ε +
2

3d2
1

(
d3

d1
+

6d2
2

d2
1

−
2a2d2

3d2
1

+
15d0d2

d1

)
ε2 + · · ·

)
. (3.21)

If this conditions are satisfied then all divergences cancel and the theory is finite up to

three loops. Further loops require new terms in eq. (3.21).

4. Beta deformed N = 4 SYM theory in 4 loops

Consider now the beta deformed N = 4 SYM theory. It is given by the action [9]

S =

∫
d8zTr

(
e−gV Φ̄ie

gV Φi
)

+
1

2g2

∫
d6zTr(W αWα)

+ih

∫
d6zTr

(
qΦ1Φ2Φ3 −

1

q
Φ1Φ3Φ2

)

+ih̄

∫
d6z̄T r

(
1

q̄
Φ̄1Φ̄2Φ̄3 − q̄Φ̄1Φ̄3Φ̄2

)
, q ≡ eiπβ , (4.1)

where the superfield strength tensor Wα = D̄2(e−gV DαegV ) and Φi with i = 1, 2, 3 are the

three chiral superfields of the original N = 4 SYM theory in adjoint representation of the

gauge group; h and β are complex numbers and g is the real gauge coupling constant. In

the undeformed N = 4 SYM theory one has h = g and q = 1.

In the present case it is useful to define the couplings

h1 ≡ hq, h2 ≡ h/q, h2
1 ≡ h1h̄1, h2

2 ≡ h2h̄2. (4.2)

The goal is to study the conditions that in the planar limit (large N of SU(N)) the

couplings h2
1 and h2

2 have to satisfy in order to get conformal invariance of the theory for

complex values of h and β. Explicit calculation gives the following values for the coefficient

functions of the renormalization constant Z−1
2 in notation of the previous section [9] (For

simplicity everywhere only the difference between the beta deformed and undeformed N =

4 SYM theory is considered [11])

cnk = Fnk(h
2
1, h

2
2, g

2) − (2g2)n, n = 1 . . . 3, k = 1 . . . 3, (4.3)

where the functions Fnk satisfy

Fnk(h
2
1 + h2

2 = 2g2) = (2g2)n.

Eq. (4.3) can be also rewritten as

cnk = (h2
1 + h2

2 − 2g2)Pnk(h
2
1, h

2
2, 2g

2), n = 1 . . . 3, k = 1 . . . 3, (4.4)

where Pnk is a homogeneous polynomial of the order n − 1.
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Figure 1: The only relevant divergent planar supergraph and its scalar counterpart at four loops

For n = 4 one has

c4i = (h2
1 + h2

2 − 2g2)P4i(h
2
1, h

2
2, 2g

2), i 6= 1 (4.5)

c41 = (h2
1 + h2

2 − 2g2)P41(h
2
1, h

2
2, 2g

2) + G41(h
2
1, h

2
2, 2g

2). (4.6)

where G41(h
2
1, h

2
2, 2g

2) is a homogeneous polynomial of the fourth order that does not

vanish at h2
1 + h2

2 = 2g2. The latter contribution comes from the four loop chiral graph [9]

(see figure 1). This graph has no divergent subgraphs and, therefore, has only primitive

divergence.

Explicit form of c11 and c41 is

c11 =

(
−

N

(2π)2

)
(h2

1 + h2
2 − 2g2)

.
= d1(h

2
1 + h2

2 − 2g2) (4.7)

c41 =
5

2
ζ(5)

N4

(2π)8
[(h2

1 + h2
2)

4 − (2g2)4 + (h2
1 − h2

2)
4]

.
= d2[(h

2
1 + h2

2)
4 − (2g2)4 + (h2

1 − h2
2)

4]. (4.8)

Hereafter the chiral-gauge Φ̄V Φ contributions proportional to h2
1 + h2

2 − 2g2 are omitted.

According to the recipe of the previous section one can now construct a conformal

and finite theory choosing the renormalized couplings in the form of a double series of the

fourth order

h2
1 = g2(a + α

(3)
0 ε3) + g4α

(2)
1 ε2 + g6α

(1)
2 ε + g8α

(0)
3 ,

h2
2 = g2(b + β

(3)
0 ε3) + g4β

(2)
1 ε2 + g6β

(1)
2 ε + g8β

(0)
3 . (4.9)

Now, from the requirement of vanishing of anomalous dimension γ = c11 + 2c21 + 3c31 +

4c41 = 0, one finds

1 loop : a + b = 2, (4.10)

4 loops : α
(0)
3 + β

(0)
3 =

−4Ĝ41

d1g8
=

−4(a − b)4d2

d1
,

where hereafter Ĝ41 means that one has to take G41 at h2
1 + h2

2 = 2g2.

To get α
(3)
0 and β

(3)
0 one has to consider the bare propagator. Since the only nontrivial

graph giving contribution to G41 has no divergent subgraphs the essential singular part of

the bare propagator is

D41 = −G41.
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Therefore, the condition for its cancellation is

P̂44g
2(α

(3)
0 + β

(3)
0 ) − Ĝ41 = 0.

This gives

α
(3)
0 + β

(3)
0 =

Ĝ41

P̂44g2
. (4.11)

The value of P̂44 can be calculated from the pole equations: P̂44 = 9d4
1g

6, so that

α
(3)
0 + β

(3)
0 =

(a − b)4d2

9d4
1

. (4.12)

To reach total finiteness one can use the remaining parameters. From the requirement

that Z−1
2 = 1 in four loops one gets

Ĝ41+d1g
8(α

(0)
3 +β

(0)
3 )+P̂22g

6(α
(1)
2 +β

(1)
2 )+P̂33g

4(α
(2)
1 +β

(2)
1 )+P̂44g

2(α
(3)
0 +β

(3)
0 ) = 0. (4.13)

This is one equation for two pairs of parameters. However, the same parameters are

responsible for the cancellation of the second order pole in five loops. The fifth order

coefficients are

c5i = (h2
1 + h2

2 − 2g2)P5i(h
2
1, h

2
2, 2g

2), i = 3, 4, 5, (4.14)

c5i = (h2
1 + h2

2 − 2g2)P5i(h
2
1, h

2
2, 2g

2) + G5i(h
2
1, h

2
2, 2g

2), i = 1, 2

Having in mind expansion (4.9) the second order pole takes the form

Ĝ52 + P̂22g
8(α

(0)
3 + β

(0)
3 ) + P̂33g

6(α
(1)
2 + β

(1)
2 ) + P̂44g

4(α
(2)
1 + β

(2)
1 ) + P̂55g

2(α
(3)
0 + β

(3)
0 ) = 0.

(4.15)

The coefficient functions P̂22, P̂33, P̂44, P̂55 and Ĝ52 can be found from the pole equations

that gives

P̂22 = 3d2
1g

2, P̂33 = 6d3
1g

4, P̂44 = 9d4
1g

6, P̂55 =
54

5
d5
1g

8, Ĝ52 =
24

5
d1Ĝ41g

2.

Substituting these values into (4.13), (4.15) and taking into account eqs. (4.10), (4.12) one

gets

α
(2)
1 + β

(2)
1 = −

2

3

(a − b)4d2

d3
1

,

α
(1)
2 + β

(1)
2 = 2

(a − b)4d2

d2
1

. (4.16)

Provided eqs. (4.10), (4.12), (4.16) and (4.9) are satisfied one has totally consistent

finite and conformally invariant theory (up to four loops) parameterized by two parameters

a and b related by one condition a+b = 2. Apparently the mechanism will work in any loop

order irrespectively of the explicit form of divergent terms. Looking back to the analysis

of divergent structures in ref. [9] one finds that new chiral graphs always give contribution
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proportional to (h2
1 − h2

2)
4, so that the compensating terms of expansion will be always

proportional to (a − b)4 as above.

In ref. [9, 10] it was claimed that the only reliable solution is a = b = 1. Otherwise one

can not reach both the finiteness and conformal invariance simultaneously. We see that

this statement is a result of mistreatment of dimensional regularization (reduction) in the

process of cancellation of divergences: the authors of [9, 10] considered only the one fold

expansion instead of two fold one (4.9). For the correct implementation of the procedure

a is arbitrary and b = 2− a. In fact, as one can see above, the requirement of cancellation

of divergences always defines only the sum of α’s and β’s, thus allowing the whole family

of solutions

h2
1 + h2

2 = h̄h(q̄q + 1/q̄q) (4.17)

= g2

{

2+
5

18
ζ5δ

4ε3+
5

3
ζ5δ

4

(
g2N

4π2

)
ε2+5ζ5δ

4

(
g2N

4π2

)2

ε+10ζ5δ
4

(
g2N

4π2

)3

+· · ·

}

,

where we denoted a − b ≡ δ. For the bare couplings one has

h2
1|B + h2

2|B = g2
B

{
2 +

5

18
ζ5δ

4ε3 + · · ·

}
. (4.18)

This permits, in particular, the value of |q| 6= 1, thus allowing one to obtain a complex

deformation of the N = 4 SYM theory with arbitrary complex β.

5. Conclusion

We conclude that properly treated β deformed N = 4 SYM theory can be made simulta-

neously conformal invariant and finite since these two requirements are identical. This can

be achieved by adjusting the Yukawa couplings order by order in PT. In the framework of

dimensional regularization (reduction) this requires the double series over the gauge cou-

pling g and the parameter of dimensional regularization ε. For the bare coupling, on the

contrary, only the one fold series over ε is enough. The whole procedure depends on reg-

ularization (for bare quantities) and renormalization scheme (for the renormalized ones).

In the other regularization techniques it looks differently but the main conclusion remains

the same.

The analysed β deformed SYM theory represents the whole class of conformal N = 1

SYM theories in four dimensions. They can be constructed by the same mechanism of

adjustment of the corresponding Yukawa couplings. This adjustment has to be done order

by order in PT. At the moment there is no any theory (except for N = 4 and N = 2 SYM

ones) for which the all loop solution is known. These theories may as well have a dual

description in the framework of supergravities within the AdS/CFT correspondence and

though the proper backgrounds are not found few steps in this direction have been made

(see for example [22, 23]).
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